

USER MANUAL ETX-8X90 Computer-On-Module

1.01-12242012-141900

Copyright

Copyright © 2012 VIA Technologies Incorporated. All rights reserved.

No part of this document may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language, in any form or by any means, electronic, mechanical, magnetic, optical, chemical, manual or otherwise without the prior written permission of VIA Technologies, Incorporated.

Trademarks

All trademarks are the property of their respective holders.

Disclaimer

No license is granted, implied or otherwise, under any patent or patent rights of VIA Technologies. VIA Technologies makes no warranties, implied or otherwise, in regard to this document and to the products described in this document. The information provided in this document is believed to be accurate and reliable as of the publication date of this document. However, VIA Technologies assumes no responsibility for the use or misuse of the information in this document and for any patent infringements that may arise from the use of this document. The information and product specifications within this document are subject to change at any time, without notice and without obligation to notify any person of such change.

VIA Technologies, Inc. reserves the right the make changes to the products described in this manual at any time without prior notice.

Regulatory Compliance

FCC-A Radio Frequency Interference Statement

This equipment has been tested and found to comply with the limits for a class A digital device, pursuant to part 15 of the FCC rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference, in which case the user will be required to correct the interference at his personal expense.

Notice 1

The changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

Notice 2

Shielded interface cables and A.C. power cord, if any, must be used in order to comply with the emission limits.

Tested To Comply With FCC Standards FOR HOME OR OFFICE USE

XX Cmbedded

Battery Recycling and Disposal

- Only use the appropriate battery specified for this product.
- Do not re-use, recharge, or reheat an old battery.
- Do not attempt to force open the battery.
- Do not discard used batteries with regular trash.
- Discard used batteries according to local regulations.

Safety Precautions

- Always read the safety instructions carefully.
- □ Keep this User's Manual for future reference.
- All cautions and warnings on the equipment should be noted.
- □ Keep this equipment away from humidity.
- Lay this equipment on a reliable flat surface before setting it up.
- □ Make sure the voltage of the power source and adjust properly 110/220V before connecting the equipment to the power inlet.
- \Box Place the power cord in such a way that people cannot step on it.
- Always unplug the power cord before inserting any add-on card or module.
- □ If any of the following situations arises, get the equipment checked by authorized service personnel:
 - The power cord or plug is damaged.
 - Liquid has penetrated into the equipment.
 - The equipment has been exposed to moisture.
 - The equipment has not worked well or you cannot get it work according to User's Manual.
 - The equipment has dropped and damaged.
 - The equipment has obvious sign of breakage.
- Do not leave this equipment in an environment unconditioned or in a storage temperature above 60°C (140°F). The equipment may be damaged.
- Do not leave this equipment in direct sunlight.
- □ Never pour any liquid into the opening. Liquid can cause damage or electrical shock.
- Do not place anything over the power cord.
- $\hfill\square$ Do not cover the ventilation holes. The openings on the enclosure protect the equipment from overheating

Ordering Information

Part Number 10GAB12A00020 10GAC0000020 99G42-01381Q 99G42-01390Q

Description

ETX-8X90 module Debug board ETX heatsink with fan ETX heat spreader

Table of Contents

1. Produ	ct Overview	1
1.1.	Key Components	1
1.1.1.	VIA Nano [™] X2 Processor	1
1.1.2.	VIA VX900 Chipset	1
1.2.	Product Specifications	2
1.3.	Layout Diagram	4
1.4.	Product Dimensions	5
2 1/O In	terface	7
21	microSD Card Slot	7
2.2	Mini USB Ports	
2.3.	SATA Connectors	
2.4.	VGA Connector	
2.5.	DC-In Power Connector	11
2.6.	CPU and System Fan Connectors	12
2.7.	HDD Selector Switch	13
2.8.	Clear CMOS Jumper	14
2.9.	LPC Connector	15
2.10.	SPI Connector	16
2.11.	ETX Connectors	17
2.11.1	. ETX Connector X1 (CNX1)	18
2.11.2	ETX Connector X2 (CNX2)	19
2.11.3	ETX Connector X3 (CNX3)	20
2.11.4	ETX Connector X4 (CNX4)	21
3 Hardy	ware Installation	າາ
3. 1 Idi Uv	Mounting ETX 8290 module onto the ETXDB1 carrier board	ZZ
J.1.		ZZ
4. BIOS	Setup Utility	29
4.1.	Entering the BIOS Setup Utility	29
4.2.	Control Keys	29
4.3.	Navigating the BIOS Menus	30
4.4.	Getting Help	30
4.5.	System Overview	31
4.5.1.	AMIBIOS	31
4.5.2.	Processor	31
4.5.3.	System Memory	31
4.5.4.	System Time	32

XXX Cmbedded

4.5.5. Syste	em Date	. 32
4.6. Advanc	ed Settings	. 33
4.6.1. CPU	Configuration	. 34
4.6.2. SATA	A Configuration	. 35
4.6.2.1.	Hard Disk Information	. 36
4.6.3. Supe	rIO Configuration	. 38
4.6.3.1.	Serial Ports 1 to 2 Address and IRQ	. 38
4.6.3.2.	Serial Port 2 Mode	. 38
4.6.3.3.	Parallel Port Address	. 38
4.6.3.4.	Parallel Port Mode	. 39
4.6.3.5.	Parallel Port IRQ	. 39
4.6.4. Hard	ware Health Configuration	. 40
4.6.4.1.	Smart FAN 1 and FAN 2	. 40
4.6.5. ACPI	Configuration	. 41
4.6.5.1.	Suspend Mode	. 41
4.6.5.2.	ACPI Version Features	. 42
4.6.6. APM	Configuration	. 43
4.6.6.1.	Power Button Mode	. 43
4.6.6.2.	Restore on AC/Power Loss	. 44
4.6.6.3.	Resume On PCI PME#	. 44
4.6.6.4.	Resume On KBC	. 44
4.6.6.5.	Wake-Up Key	. 45
4.6.6.6.	Wake-Up Password	. 45
4.6.6.7.	Resume On PS/2 Mouse	. 45
4.6.6.8.	Resume on RTC Alarm	. 45
4.6.6.9.	RTC Alarm Date (Days)	. 46
4.6.6.10.	System Time	. 46
4.6.7. Spre	ad Spectrum Configuration	. 47
4.6.7.1.	CPU Spread Spectrum Setting	. 47
4.6.8. USB	Configuration	. 48
4.6.9. CRB	Configuration	. 49
4.6.9.1.	DRAM Clock	. 49
4.6.9.2.	Select Display Device 1 and 2	. 49
4.6.9.3.	Panel Type	. 50
4.6.9.4.	VGA Share Memory (Frame Buffer)	. 50
4.6.9.5.	OnChip HDAC Device	. 50
4.6.9.6.	SMBus Device Switch	. 50
4.6.9.7.	SDIO Host controller	. 50
4.6.9.8.	WATCH-DOG	. 50
4.6.9.9.	Unit-Select	. 50
4.6.9.10.	Time-Select	. 51

			EIX-8X90 User Manual
	4.6.9.1	1. Backlight Control	
	4.6.9.1	2. Backlight PWM Clock	
	4.6.9.1	3. LAN Boot ROM	
	4.7. Boo	ot Settings	
	4.7.1.	Boot Settings Configuration	53
	4.7.1.1	Quick Boot	
	4.7.1.2	2. Quiet Boot	
	4.7.1.3	B. Bootup Num-Lock	53
	4.7.1.4	Wait for 'F1' if Error	
	4.7.1.5	6. Hit 'DEL' Message Display	
	4.7.2.	Boot Device Priority	
	4.7.2.1	1 st Boot Device	
	4.8. Sec	urity Settings	
	4.8.1.	Change Supervisor Password	
	4.8.2.	Jser Access Level	
	4.8.3.	Change User Password	
	4.8.4.	Clear User Password	
	4.8.5. I	Password Check	
	4.9. Exi	Options	
	4.9.1.	Save Changes and Exit	
	4.9.2.	Discard Changes and Exit	
	4.9.3.	Discard Changes	
	4.9.4.	oad Optimal Defaults	
F	Drivor Ind	allation	50
J.	51 Mic	rosoft Driver Support	
	5.1. Mill 5.2 Lin	v Driver Support	
	J.Z. LIII		
A	ppendix A. ET	XDB1 Carrier Board Reference	61
	A.1. Board S	pecifications	
	A.1.1. Boa	, rd Storage Channel Configuration	
	A.2. Externa	I/O Connectors	
	A.2.1. Fro	nt I/O	
	A.3. ETXDB1	Layout Diagram	
	A.3.1. On	poard Connectors and Slots	
	A.3.2. On	ooard Pin headers and Jumpers	
	A.3.3. Cor	nectors and Slots Pin Definition	
	A.3.3.	1. ATX1 : 20-pin ATX Power Connector	
	A.3.3.	2. ISA1 : ISA slot	
	A.3.3.	3. PCI1 and PCI2: PCI Slots	
	A.3.3.	4. IDE1 and IDE2: IDE Connectors	

A.3.3.5. LVDS1: LVDS Connector	. 71
A.3.3.6. BL1: Backlight Connector	.71
A.3.3.7. CNX1~ CNX4: ETX Connector X1, X2, X3 and X4	. 72
A.3.4. Pin Headers and Jumpers Pin Definition	. 76
A.3.4.1. F_AUDIO1 and I2C1: Front audio and I ² C pin headers	. 76
A.3.4.2. SIR1 and SMB1: Serial Infrared and SMBus pin headers	. 77
A.3.4.3. F_PANEL1 and LPT1: Front panel and LPT pin headers	. 78
A.3.4.4. COM2 and KBMS1: COM and Keyboard & mouse pin headers.	. 79
A.3.4.5. J1: Back Light and Panel Power select jumper	. 80
A.4. ETXDB1 Dimensions	. 81
A.4.1. ETXDB1 Board Dimensions	. 81
A.4.2. ETXDB1 External I/O Dimensions	. 81

List of Tables

Table 1: microSD card slot pinout	7
Table 2: Mini USB port pinout	8
Table 3: SATA connector pinouts	9
Table 4: VGA connector pinout	10
Table 5: DC-In power connector pinout	11
Table 6: CPU and System fan connector pinouts	12
Table 7: HDD selector DIP switch settings table	13
Table 8: Clear CMOS jumper settings	14
Table 9: LPC connector pinout	15
Table 10: SPI connector pinout	16
Table 11: ETX connector X1 pinout	18
Table 12: ETX connector X2 pinout	19
Table 13: ETX connector X3 pinout	20
Table 14: ETX connector X4 pinout	21
Table 15: Serial port addresses and IRQs	38
Table 16: Panel types resolution	50
Table 17: ETXDB1 and ETX-8X90 storage configuration	62
Table 18: Description table of the ETXDB1 connectors and slots	64
Table 19: Description table of the ETXDB1 pin headers and jumpers	65
Table 20: ATX Power connector pinout	66
Table 21: ISA slot pinout	67
Table 22: PCI slot 1 pinout	68
Table 23: PCI slot 2 pinout	69
Table 24: IDE connectors pinout	70
Table 25: LVDS connector pinout	71
Table 26: Backlight connector pinout	71
Table 27: ETX connector X1 pinout	72
Table 28: ETX connector X2 pinout	73
Table 29: ETX connector X3 pinout	74
Table 30: ETX connector X4 pinout	75
Table 31: Front audio pin header pinout	76
Table 32: I ² C pin header pinout	76
Table 33: Serial Infrared pin header pinout	77
Table 34: SMBus pin header pinout	77
Table 35: Front panel pin header pinout	78
Table 36: LPT pin header pinout	78
Table 37: COM pin header pinout	79
Table 38: Keyboard & mouse pin header pinout	79
Table 39: Backlight and Panel power select jumper settings	80

List of Figures

Figure 1: Top view layout diagram of the ETX-8X90 module	4
Figure 2: Bottom view layout diagram of the ETX-8X90 module	4
Figure 3: Dimensions of the ETX-8X90 module (top view)	5
Figure 4: Dimensions of the ETX-8X90 module (bottom view)	5
Figure 5: microSD card slot diagram	7
Figure 6: Mini USB port diagram	8
Figure 7: SATA connector diagrams	9
Figure 8: VGA connector diagram	10
Figure 9: DC-In power connector diagram	11
Figure 10: CPU and System fan connector diagrams	12
Figure 11: HDD selector DIP switch diagram	13
Figure 12: Clear CMOS jumper	14
Figure 13: LPC connector diagram	15
Figure 14: SPI connector diagram	16
Figure 15: ETX connector diagram	17
Figure 16: Carrier board ETX connectors and mounting holes	22
Figure 17: Installing module on the carrier board	23
Figure 18: Inserting and locking the memory module	24
Figure 19: Removing thermal pad cover	25
Figure 20: Heatsink/heat spreader mounting holes on ETX-8X90 module	26
Figure 21: Installing heatsink/heat spreader on ETX-8X90 module	27
Figure 22: Securing heatsink/heat spreader and ETX-8X90 module	28
Figure 23: Illustration of the Main menu screen	31
Figure 24: Illustration of the Advanced Settings screen	33
Figure 25: Illustration of the CPU Configuration screen	34
Figure 26: Illustration of SATA Configuration screen	35
Figure 27: Illustration of SATA-1 Primary IDE screen	36
Figure 28: Illustration of SuperIO Configuration screen	38
Figure 29: Illustration of Hardware Health Configuration screen	40
Figure 30: Illustration of ACPI Configuration screen	41
Figure 31: Illustration of APM Configuration screen	43
Figure 32: Illustration of Spread Spectrum Configuration screen	47
Figure 33: Illustration of USB Configuration screen	48
Figure 34: Illustration of CRB Configuration screen	49
Figure 35: Illustration of Boot Settings screen	52
Figure 36: Illustration of Boot Settings Configuration screen	53
Figure 37: Illustration of Security Settings screen	56
Figure 38: Illustration of Exit Options screen	58
Figure 39: Front I/O ports and connectors	63

	EIX-8X90 User Manual
Figure 40: ETXDB1 connectors and slots diagram	64
Figure 41: ETXDB1 pin headers and jumpers diagram	65
Figure 42: ATX Power connector diagram	
Figure 43: ISA slot diagram	
Figure 44: PCI slot diagram	
Figure 45: IDE connector diagram	70
Figure 46: LVDS connector diagram	71
Figure 47: Backlight connector diagram	71
Figure 48: ETX connector X1, X2, X3 and X4 diagram	72
Figure 49: Front audio and I ² C pin header diagrams	76
Figure 50: Serial Infrared and SMBus pin header diagram	77
Figure 51: Front panel and LPT pin header diagram	
Figure 52: COM and Keyboard/mouse pin header diagram	s79
Figure 53: Backlight and Panel power select jumper diagra	am 80
Figure 54: ETXDB1 board dimension diagram	
Figure 55: ETXDB1 External I/O dimension diagram	

ETX-8X90 User Manual

1. Product Overview

The VIA ETX-8X90 is a compact and highly integrated Computer-On-Module based on standard Embedded Technology eXtended form factor. It comes with power efficient VIA Nano X2 1.2+ GHz dual core 64-bit processor, and VIA VX900 all-in-one single chipset featuring the VIA UniChrome9[™] HD DX9 with 3D/2D graphics and video decoding accelerator for rich digital media performance, and provides support for extensive connectivity options including USB, Ethernet, Audio, PCI, ISA, IDE and graphics through board-toboard connectors to an I/O carrier board. The VIA ETX-8X90 module is designed for embedded applications such as industrial PC, medical PC, test machines, measuring equipment, monitoring system, etc.

1.1. Key Components

1.1.1. VIA Nano[™] X2 Processor

The VIA Nano X2 is a 64-bit superscalar x86 dual core processor based on a 40 nanometer process technology. Packed into an ultra compact NanoBGA2 package (measuring 21mm x 21mm), it delivers an energy-efficient yet powerful performance, with cool and quiet operation. The VIA Nano X2 processor is ideal for embedded system applications such as industrial PCs, test machines, measuring equipment, digital signage, medical PCs, monitoring systems, gaming machines, in-vehicle entertainment, etc.

1.1.2. VIA VX900 Chipset

The VIA VX900 Unified Digital Media Chipset is designed to enable high quality digital video streaming and DVD playback. The VIA VX900 features VIA Chrome9™ HD DX9 with 2D/3D graphics and video accelerators, DDR3 1066/800 MHz support, motion compensation and dual display support to ensure a rich overall entertainment experience.

1.2. Product Specifications

Core	Processor
	• VIA Nano X2 1.2+GHz NanoBGA2 processor (U4300)
	Chipset
	 VIA VX900 all-in-one chipset
	System Memory
	 1 x DDR3 1066/800 SODIMM socket
	 Supports up to 4GB memory size
	On-board BIOS
	 AMI BIOS,
	 8 Mbit SPI flash memory
	Operating System
	 Microsoft Windows 7
	 Microsoft Windows XPe
	 Microsoft Windows Embedded System 7
	 Microsoft Windows CE6.0
	 Linux (Debian, Ubuntu)
	 VXWorks 6.9
	Hardware Monitoring
	 CPU/System temperature reading
	 CPU/System fan speed reading
	 System voltage monitoring
	System Monitoring and Management
	 Wake-on-LAN
	 System power management
	 AC power failure recovery
	 WatchDog Timer
	 CPU/System fan power connector
Graphics and	Graphics processor
Video	 Integrated VIA UniChrome9™ HD DX9 3D/2D graphics with
	MPEG-2, WMV9, and H.264 video decoding accelerator
	Graphics Memory
	 UMA, up to 512MB (BIOS setting)
	CRT
	 350 MHz RAMDAC
	 Supports up to 2048 x 1536 resolution
	LCD
	 Supports dual-channel 18-bit or 24-bit LVDS panel
Ethernet	Chipset
	 Realtek RTL8139DL Ethernet Controller

Storage	 micro SD card reader 1 × Micro SD card reader (support OS boot on Linux, Windows CE and VxWorks) Hard disk¹ 2 × SATA 3.0 Gbps ports (SATA1 and SATA2 on module) 2 × IDE connectors (IDE1 and IDE2 on carrier board)
Note: 1. The ET default se manufactu	X-8X90 only supports two channel of storage. The SATA2 + IDE1 configuration is the tting. The other configurations such as SATA1 + SATA2 or IDE1 + IDE2 are uring options. For more details, please contact your local sales representative.
Input/Output	Audio VT2021 Audio Codec LAN 10/100 Mbit Ethernet (RTL8139DL) USB Support up to four USB 2.0 ports (on carrier board) Support up to two mini USB 2.0 ports (on module) LPT Support one LPT port COM Support two UARTs port Super IO Fintek F71869ED IrDA Support SIR Keyboard/Mouse Support PS/2 keyboard and mouse Expansion Buses Support I ² C bus Support I ² C bus Support ISA bus (ETX 3.0 compliant) (DMA transfer not
Mechanical and Environment	Compliance • CE • FCC • RoHS ETX Compliance • ETX 3.02, Compact Module Dimension • 95 mm x 114 mm Operating Temperature • 0°C up to 60°C Storage Temperature • -40°C to 70°C Operating Humidity

XXX Cmbedded

• 0% to 95% (relative humidity; non-condensing)

1.3. Layout Diagram

Figure 1: Top view layout diagram of the ETX-8X90 module

Figure 2: Bottom view layout diagram of the ETX-8X90 module

1.4. Product Dimensions

Figure 3: Dimensions of the ETX-8X90 module (top view)

Figure 4: Dimensions of the ETX-8X90 module (bottom view)

2. I/O Interface

The ETX-8X90 has a selection of interfaces integrated into the module.

2.1. microSD Card Slot

The microSD card slot/reader is for flash memory microSD card that can provide additional storage data. The microSD card slot/reader can also used for operating system booting for Window CE, Linux and Vxworks. The MICROSD1 pinout is shown below.

Figure 5: microSD card slot diagram

Pin	Signal
1	CR_D2
2	CR_D3
3	CR_CMD
4	VCCCRPWR
5	CR_CLK
6	GND
7	CR_D0
8	CR_D1
9	-CR_CD

Table 1: microSD card slot pinout

2.2. Mini USB Ports

There are two integrated mini USB 2.0 ports on ETX-8X90 module labeled as "USB1 and USB2". The mini USB port gives complete plug and play and hot swap capability for external devices. Each port is using the USB mini-AB type receptacle connector. The pinout of the mini USB ports are shown below.

Figure 6: Mini USB port diagram

Mini USB port 1		Mini USB port 2		
Pin	Signal	Pin	Signal	
1	+5VSUS	1	+5VSUS	
2	USB4-	2	USB5-	
3	USB4+	3	USB5+	
4	GND	4	GND	
5	GND	5	GND	

Table 2: Mini USB port pinout

2.3. SATA Connectors

The two SATA connectors labeled as SATA1 (optional) and SATA2¹ on board can support up to 3.0 Gb/s transfer speeds. Both connectors have 7th pin that can provide +5V power to a SATA Disk-On-Module (DOM)². When a regular SATA hard drive is connected, the 7th pin will be a ground pin. The pinouts of the SATA connectors are shown below.

Figure 7: SATA connector diagrams

SATA1 connector		SATA2 connector		
Pin	Signal	Pin	Signal	
1	GND	1	GND	
2	STXP_0	2	STXP_1	
3	STXN_0	3	STXN_1	
4	GND	4	GND	
5	SRXN_0	5	SRXN_1	
6	SRXP_0	6	SRXP_1	
7	GND	7	GND	

Table 3: SATA connector pinouts

A Notes:

- As default, SATA2 connector is enabled and SATA1 connector is disabled. The SATA1 connector is a manufacturing option.
- 2. The SATA connector pin 7 default setting is GND. The +5V supports is a factory option.

2.4. VGA Connector

The ETX-8X90 module has on board VGA connector labeled as VGA1. This connector is for connecting the VGA DE-15 connector to support high resolution analog VGA monitor. It supports up to 2048 x 1536 resolutions. The pinout of the VGA1 connector is shown below.

Figure 8: VGA connector diagram

Pin	Signal
1	REDN
2	GREENN
3	BLUEN
4	GND
5	HS
6	VS
7	GND
8	DDCCLKN
9	DDCDATAN

Table 4: VGA connector pinout

2.5. DC-In Power Connector

The ETX-8X90 module has an onboard +5V DC-In 4-pin power connector to connect the DC-in power cable. The DC-in power connector is labeled as "DCIN1". The pinout of the DC-in power connector is shown below.

Figure 9: DC-In power connector diagram

Pin	Signal
1	+5VSB
2	+5VSB
3	GND
4	GND

Table 5: DC-In power connector pinout

2.6. CPU and System Fan Connectors

There are two fan connectors on the module runs on +5V for maintaining CPU and System cooling. The fan connector for the CPU is labeled as "FAN1" and the fan connector for the System is labeled as "FAN2". The fans provide variable speeds controlled by the BIOS. The fans can be forced to operate at full speed by disabling the Smart Fan feature in the BIOS. The pinout of the fan connectors are shown below.

Figure 10: CPU and System fan connector diagrams

C	PU fan (FAN1)	System fan (FAN2)				
Pin	Signal	Pin	Signal			
1	FANIN1	1	FANIN2			
2	FANCTL1 (+5V)	2	FANCTL2 (+5V)			
3	GND	3	GND			

Table 6: CPU and System fan connector pinouts

2.7. HDD Selector Switch

The ETX-8X90 module has an onboard HDD selector DIP switch. The DIP switch is designed to enable or disable the IDE and SATA connectors. The DIP switch is labeled as DIPSW1.

Figure 11: HDD selector DIP switch diagram

HDD (IDE and SATA) select settings	Switch 1	Switch 2
Enable SATA1 and SATA2	On	On
Enable SATA1 and IDE2	On	Off
Enable IDE1 and SATA2 (default setting)	Off	On
Enable IDE1 and IDE2	Off	Off

Table 7: HDD selector DIP switch settings table

2.8. Clear CMOS Jumper

The onboard CMOS RAM stores system configuration data and has an onboard battery power supply. To reset the CMOS settings, set the jumper on pins 2 and 3 while the system is off. Return the jumper to pins 1 and 2 afterwards. Setting the jumper while the system is on will damage the board. The default setting is on pins 1 and 2. The Clear CMOS jumper is labeled as CMOS1.

Figure 12: Clear CMOS jumper

Setting	Pin 1	Pin 2	Pin 3
Normal operation (default setting)	On	On	Off
Clear CMOS	Off	On	On

Table 8: Clear CMOS jumper settings

Except when clearing the RTC RAM, never remove the cap from the CLEAR_CMOS jumper default position. Removing the cap will cause system boot failure. Avoid clearing the CMOS while the system is on; it will damage the board.

2.9. LPC Connector

The ETX-8X90 module includes one 9-pin LPC connector labeled as LPC1 on the bottom side. The LPC connector can be used for debugging purposes. The connector pinout is shown below.

Figure 13: LPC connector diagram

Pin	Signal
1	+3.3V
2	-LPCRST
3	PCICLK1
4	LAD0
5	-LFRAME
6	LAD1
7	LAD3
8	LAD2
9	GND

Table 9: LPC connector pinout

2.10. SPI Connector

The ETX-8X90 module has one 8-pin SPI flash connector. The SPI (Serial Peripheral Interface) flash connector is used to connect the SPI BIOS programming fixture for updating the SPI flash ROM or for debugging purposes. The SPI flash connector is labeled as "SPI1". The pinout of the connector is shown below.

Figure 14: SPI connector diagram

Pin	Signal
1	NC
2	NC
3	MSPIDO
4	MSPIDI
5	MSPICLK
6	MSPISS0
7	GND
8	SPIVCC

Table 10: SPI connector pinout

2.11. ETX Connectors

The ETX-8X90 module has four ETX connectors labeled as "CNX1, CNX2, CNX3 and CNX4". These connectors are designed to provide interface to the carrier board/baseboard.

Figure 15: ETX connector diagram

2.11.1. ETX Connector X1 (CNX1)

The ETX connector X1 contains signal groups of PCI bus, USB and Audio interface. The pinout of the connector X1 is shown below.

	CNX1										
Pin	Signal	Pin	Signal		Pin	Signal	Pin	Signal			
1	GND	2	GND		51	+5V	52	+5V			
3	PCICLK_3	4	PCICLK_4		53	PAR	54	-SERR			
5	GND	6	GND		55	-PERR	56	NC			
7	PCLK1	8	PCLK2		57	-PME	58	USB2-			
9	-REQ3_ETX	10	-GNT3_ETX		59	-PLOCK	60	-DEVSEL			
11	GNT2_ETX	12	+3.3V		61	-TRDY	62	USB3-			
13	REQ2_ETX	14	-GNT1_ETX		63	-IRDY	64	-STOP			
15	REQ1_ETX	16	+3.3V		65	-FRAME	66	USB2+			
17	-GNT0_ETX	18	NC		67	GND	68	GND			
19	+5V	20	+5V		69	AD16	70	-CBE2			
21	SERIRQ1	22	-REQ0_ETX		71	AD17	72	USB3+			
23	AD0	24	+3.3V		73	AD19	74	AD18			
25	AD1	26	AD2		75	AD20	76	USB0-			
27	AD4	28	AD3		77	AD22	78	AD21			
29	AD6	30	AD5		79	AD23	80	USB1-			
31	-CBE0	32	AD7		81	AD24	82	-CBE3			
33	AD8	34	AD9		83	+5V	84	+5V			
35	GND	36	GND		85	AD25	86	AD26			
37	AD10	38	AUXAL		87	AD28	88	USB0+			
39	AD11	40	MIC		89	AD27	90	AD29			
41	AD12	42	AUXAR		91	AD30	92	USB1+			
43	AD13	44	ASVCC		93	-PCIRST	94	AD31			
45	AD14	46	SNDL		95	-INTC	96	-INTD			
47	AD15	48	ASGND		97	-INTA	98	-INTB			
49	-CBE1	50	SNDR		99	GND	100	GND			

Table 11: ETX connector X1 pinout

2.11.2. ETX Connector X2 (CNX2)

The ETX connector X2 contains signal group of ISA bus interface. The pinout of the connector X2 is shown below.

CNX2									
Pin	Signal	Pin	Signal	Pin	Signal	Pin	Signal		
1	GND	2	GND	51	+5V	52	+5V		
3	SD14	4	SD15	53	SA6	54	IRQ5		
5	SD13	6	-MASTER	55	SA7	56	IRQ6		
7	SD12	8	DREQ7	57	SA8	58	IRQ7		
9	SD11	10	-DACK7	59	SA9	60	SYS_CLK		
11	SD10	12	DREQ6	61	SA10	62	-REFRESH		
13	SD9	14	-DACK6	63	SA11	64	DREQ1		
15	SD8	16	DREQ5	65	SA12	66	-DACK1		
17	-MEMW	18	-DACK5	67	GND	68	GND		
19	-MEMR	20	DREQ0	69	SA13	70	DREQ3		
21	LA17	22	-DACK0	71	SA14	72	-DACK3		
23	LA18	24	ISA_IRQ14	73	SA15	74	-IOR		
25	LA19	26	ISA_IRQ15	75	SA16	76	-IOW		
27	LA20	28	IRQ12	77	SA18	78	SA17		
29	LA21	30	IRQ11	79	SA19	80	-SMEMR		
31	LA22	32	IRQ10	81	-IOCHRDY	82	AEN		
33	LA23	34	-IOCS16	83	+5V	84	+5V		
35	GND	36	GND	85	SD0	86	-SMEMW		
37	-SBHE	38	-MEMCSI6	87	SD2	88	SD1		
39	SA0	40	ISA_OSC	89	SD3	90	-0WS		
41	SA1	42	BALE	91	DREQ2	92	SD4		
43	SA2	44	ТС	93	SD5	94	IRQ9		
45	SA3	46	-DACK2	95	SD6	96	SD7		
47	SA4	48	IRQ3	97	-IOCHCK	98	-RSTDRV		
49	SA5	50	IRQ4	99	GND	100	GND		

Table 12: ETX connector X2 pinout

2.11.3. ETX Connector X3 (CNX3)

The ETX connector X3 contains signal groups of VGA, LCD, Video, COM, LPT and PS2 interfaces. The pinout of the connector X3 is shown below.

CNX3										
Pin	Signal	Pin	Signal		Pin	Signal	Pin	Signal		
1	GND	2	GND		51	NC	52	NC		
3	REDN	4	BLUEN		53	+5V	54	GND		
5	HS	6	GREENN		55	PSTB	56	PAFD		
7	VS	8	DDCCLKN		57	NC	58	P_PRD7		
9	NC	10	DDCDATAN		59	IRRX	60	PERR		
11	LVDSCLK2-	12	LVDSD7-		61	IRTX	62	P_PRD6		
13	LVDSCLK2+	14	LVDSD7+		63	SIN2	64	PINIT		
15	GND	16	GND		65	GND	66	GND		
17	LVDSD5+	18	LVDSD6+		67	-RTS2	68	P_PRD5		
19	LVDSD5-	20	LVDSD6-		69	-DTR2	70	PSLIN		
21	GND	22	GND		71	-DCD2	72	P_PRD4		
23	LVDSD3-	24	LVDSD4+		73	-DSR2	74	P_PRD3		
25	LVDSD3+	26	LVDSD4-		75	-CTS2	76	P_PRD2		
27	GND	28	GND		77	SOUT2	78	P_PRD1		
29	LVDSD2-	30	LVDSCLK1+		79	-RI2	80	P_PRD0		
31	LVDSD2+	32	LVDSCLK1-		81	+5V	82	+5V		
33	GND	34	GND		83	SIN1	84	PACK		
35	LVDSD0+	36	LVDSD1+		85	-RTS1	86	P_BUSY		
37	LVDSD0-	38	LVDSD1-		87	-DTR1	88	P_PE		
39	+5V	40	+5V		89	-DCD1	90	P_SLCT		
41	JILI_DAT	42	NC		91	-DSR1	92	MSCK		
43	JILI_CLK	44	-BLON		93	-CTS1	94	MSDT		
45	BIASON	46	DIGON		95	SOUT1	96	KBCK		
47	NC	48	NC		97	-RI1	98	KBDT		
49	NC	50	NC		99	GND	100	GND		

Table 13: ETX connector X3 pinout

2.11.4. ETX Connector X4 (CNX4)

The ETX connector X4 contains signal groups of IDE, Ethernet and Miscellaneous signal interfaces. The pinout of the connector X4 is shown below.

CNX4									
Pin	Signal	Pin	Signal		Pin	Signal	Pin	Signal	
1	GND	2	GND		51	-SDIOW	52	-PDIOR	
3	+5VSB	4	PWRGIN		53	SDDREQ	54	-PDIOW	
5	PS_ON-	6	SPEAK_BZ		55	SDD15	56	PDDREQ	
7	PW_BN-	8	+3.3VBAT		57	SDD0	58	PDD15	
9	NC	10	LILED-		59	SDD14	60	PDD0	
11	RSMRST-	12	ACTLED-		61	SDD1	62	PDD14	
13	NC	14	SPEEDLED-		63	SDD13	64	PDD1	
15	NC	16	I ² C_CLK		65	GND	66	GND	
17	+5V	18	+5V		67	SDD2	68	PDD13	
19	OVCR-	20	NC		69	SDD12	70	PDD2	
21	-EXTSMI	22	I ² C_DAT		71	SDD3	72	PDD12	
23	SMBCLK	24	SMBDATA		73	SDD11	74	PDD3	
25	-SDCS3	26	-SMBALRT		75	SDD4	76	PDD11	
27	-SDCS1	28	-HD_LED		77	SDD10	78	PDD4	
29	SDA2	30	-PDCS3		79	SDD5	80	PDD10	
31	SDA0	32	-PDCS1		81	+5V	82	+5V	
33	GND	34	GND		83	SDD9	84	PDD5	
35	SPDIG	36	PDA2		85	SDD6	86	PDD9	
37	SDA1	38	PDA0		87	SDD8	88	PDD6	
39	IRQ15	40	PDA1		89	GPE2-	90	PPDIG	
41	-BATLOW	42	GPE1-		91	LAN_RXD-	92	PDD8	
43	-SDDACK	44	IRQ14		93	LAN_RXD+	94	SDD7	
45	SIORDY	46	-PDDACK		95	LAN_TXD-	96	PDD7	
47	-SDIOR	48	PIORDY		97	LAN_TXD+	98	-HDRST	
49	+5V	50	+5V		99	GND	100	GND	

Table 14: ETX connector X4 pinout

3. Hardware Installation

3.1. Mounting ETX-8X90 module onto the ETXDB1 carrier board

Step 1

Align the four ETX connectors and mounting holes of the ETX-8X90 module into the ETX connectors and mounting holes on the ETXDB1 carrier board.

Figure 16: Carrier board ETX connectors and mounting holes

Step 2

Gently press down the ETX-8X90 module until the four ETX connectors have been fully inserted into the ETX connectors on the ETXDB1 carrier board.

Top View

Figure 17: Installing module on the carrier board

Step 3

Align the notch on the memory module with the notch on the SODIMM socket. Insert the memory module into the socket at 30 degrees angle.

Figure 18: Inserting and locking the memory module

Step 4

Push down until the memory module snaps into place. The memory socket has two locking mechanisms that will click once the memory module has been fully inserted.

Flip over the heatsink/heat spreader. Remove the plastic cover of the thermal pad of the memory and chipset.

Figure 19: Removing thermal pad cover

Apply the thermal grease/paste onto the surface of the CPU. Then align the heatsink/heat spreader over the mounting holes on the ETX-8X90 module.

Figure 20: Heatsink/heat spreader mounting holes on ETX-8X90 module

Gently install the heatsink/heat spreader. Make sure to install it in proper orientation. The thermal pads underneath the heatsink/heat spreader should position above the memory and chipset respectively.

Top View

Figure 21: Installing heatsink/heat spreader on ETX-8X90 module

Step 8

Connect the CPU fan jack to the fan connector (FAN1).

Secure the ETX-8X90 module with the heatsink/heat spreader by screwing and tightening the four screws (M2.5 $^{*}12$).

Figure 22: Securing heatsink/heat spreader and ETX-8X90 module

4. BIOS Setup Utility

4.1. Entering the BIOS Setup Utility

Power on the computer and press **Delete** during the beginning of the boot sequence to enter the BIOS Setup Utility. If the entry point has passed, restart the system and try again.

4.2. Control Keys

Up	Move u	p one row
Down	Move d	own one row
Left	Move to	o the left in the navigation bar
Right	Move to) the right in the navigation bar
Enter	Access	the highlighted item / Select the item
Esc	Jumps t	o the Exit screen or returns to the previous screen
Page up	/ + ¹	Increase the numeric value
Page do	wn / -1	Decrease the numeric value
F1	General	. help ²
F5	Restore	the previous CMOS value
F9	Load op	otimized defaults
F10	Save all	the changes and exit

D. Notes:

1

Must be pressed using the 10-key pad

2. The General help contents are only for the Status Page and Option Page setup menus.

4.3. Navigating the BIOS Menus

The main menu displays all the BIOS setup categories. Use the <**Left**>/<**Right**> and <**Up**>/<**Down**> arrow keys to select any item or sub-menu. Descriptions of the selected/highlighted category are displayed at the bottom of the screen.

The small triangular arrowhead symbol next to a field indicates that a submenu is available (see figure below). Press **<Enter>** to display the sub-menu. To exit the sub-menu, press **<Esc>**.

4.4. Getting Help

The BIOS Setup Utility provides a "**General Help**" screen. This screen can be accessed at any time by pressing **F1**. The help screen displays the keys for using and navigating the BIOS Setup Utility. Press **Esc** to exit the help screen.

4.5. System Overview

The System Overview screen is the default screen that is shown when the BIOS Setup Utility is launched. This screen can be accessed by traversing the navigation bar to the "Main" label.

lain	Advanced	Boot	BIOS SETU Security	P UTILITY Exit		
System	Overview				Use	LENTERI , LTOBI
AMIBIOS Uersion :0.02 Build Date:10/19/12 ID :H36T9002					or E selection	SHIFT-TABL to ct a field. [+] or [-] to igure system Time.
Process VIA Nan System Size	or o X2 U4300 @ Memory :3840MB	1.2+ G	łz			Salact Seraan
System System	Tine Date		D16:55: (Mon 01	141 /02/20121	 File Select Screen Select Item Change Field Tab Select Field File General Help File Save and Exit ESC Exit 	

Figure 23: Illustration of the Main menu screen

4.5.1. AMIBIOS

The content in this section of the screen shows the current BIOS version, build date, and ID number.

4.5.2. Processor

This content in this section shows the CPU information that has been detected.

4.5.3. System Memory

This section shows the amount of available memory that has been detected.

4.5.4. System Time

This section shows the current system time. Press **Tab** to traverse right and **Shift+Tab** to traverse left through the hour, minute, and second segments. The **+** and **-** keys on the number pad can be used to change the values. The time format is [Hour : Minute : Second].

4.5.5. System Date

This section shows the current system date. Press **Tab** to traverse right and **Shift+Tab** to traverse left through the month, day, and year segments. The **+** and **-** keys on the number pad can be used to change the values. The weekday name is automatically updated when the date is altered. The date format is [Weekday, Month, Day, Year].

4.6. Advanced Settings

The Advanced Settings screen shows a list of categories that can provide access to a sub-screen. Sub-screen links can be identified by the preceding right-facing arrowhead.

Hain Advanced Boot Security Exit	
Advanced Settings	Configure CPU.
<pre>WARNING: Setting wrong values in below sections may cause system to malfunction. CPU Configuration Sonra Configuration Hardware Health Configuration ACPI Configuration APH Configuration Spread Spectrum Configuration USB Configuration CRB Configuration </pre>	 ↔ Select Screen ™ Select Item Enter Go to Sub Screen F1 General Help F10 Save and Exit ESC Exit

Figure 24: Illustration of the Advanced Settings screen

The Advanced Settings screen contains the following links:

- CPU Configuration
- SATA Configuration
- SuperIO Configuration
- Hardware Health Configuration
- ACPI Configuration
- APM Configuration
- Spread Spectrum Configuration
- USB Configuration
- CRB Configuration

4.6.1. CPU Configuration

The CPU Configuration screen shows detailed information about the built-in processor.

BIOS SETUP UTII Advanced	LITY
Configure advanced CPU settings Module Version:01.08	Enabled/Disabled Nano CPU Thermal
Manufacturer:UIA UIA Nano X2 U4300 @ 1.2+ GHz Speed (FSB 266MHz * 4.5): 1200MHz Core :2 Cache L1 :128 KB Cache L2 :1024 KB Microcode revision : OC PMON Support : N/A	monitor 3 function
	 ↔ Select Screen 14 Select Item ← Change Option F1 General Help F10 Save and Exit ESC Exit
v02.69 (C)Copyright 1985-2010, Am	erican Megatrends, Inc.

Figure 25: Illustration of the CPU Configuration screen

4.6.2. SATA Configuration

The SATA Configuration screen shows links to the primary and secondary IDE hard drive information screens.

Figure 26: Illustration of SATA Configuration screen

4.6.2.1. Hard Disk Information

When a hard drive is detected, the hard drive's detailed information can be displayed on the SATA-1 Primary/Secondary IDE sub-screen.

Figure 27: Illustration of SATA-1 Primary IDE screen

In addition, the PIO and DMA modes may be configured for each SATA hard drive.

4.6.2.1.1. PIO Mode

The PIO Mode has six possible settings: Auto, 0, 1, 2, 3, and 4. The "Auto" setting enables the BIOS to autonomously determine the appropriate PIO mode for the hard drive. If a manual setting is preferred, then be sure the correct PIO mode of the hard drive is used. It is not recommended to set the PIO mode higher than what the hard drive manufacturer states.

4.6.2.1.2. DMA Mode

The DMA Mode has four possible settings: Auto, SWDMAn, MWDMAn and UDMAn. If a manual setting is preferred, then be sure the correct DMA mode of the hard drive is used.

Auto

The "Auto" setting enables the BIOS to automatically detect DMA mode.

SWDMAn

Single Word DMA mode.

ETX-8X90 User Manual

MWDMAn Multi Word DMA mode.

UDMAn Ultra DMA mode.

4.6.3. SuperIO Configuration

The SuperIO Configuration screen shows the specific addresses, IRQs and types of the onboard serial ports.

lows BIOS to Select rial Port1 Base fresses.
Select Screen Select Item Change Option General Help Save and Exit C Exit

Figure 28: Illustration of SuperIO Configuration screen

4.6.3.1. Serial Ports 1 to 2 Address and IRQ

This option allows the user to select the Serial Port 1 and 2 base I/O address and interrupt request address. The Serial Port 1 to 2 has selectable options.

Port	Address	IRQs
1	3F8, Disabled	IRQ3, IRQ4, IRQ10, IRQ11
2	2F8, Disabled	IRQ3, IRQ4, IRQ10, IRQ11

Table 15: Serial port addresses and IRQs

4.6.3.2. Serial Port 2 Mode

This specifies the serial port mode. The serial port mode has three options: Normal, IrDA (1.6 μ s) and IrDA (3/16 bit)

4.6.3.3. Parallel Port Address

This specifies the I/O port address and IRQ of the parallel port. The parallel port has four options: Disabled and 378.

4.6.3.4. Parallel Port Mode

This specifies the parallel port mode. The parallel port mode has five options: Normal, Bi-Directional, ECP, EPP, ECP+EPP.

4.6.3.5. Parallel Port IRQ

This specifies the parallel port interrupt request address. The parallel port IRQ has 2 options: IRQ5 and IRQ7.

4.6.4. Hardware Health Configuration

The Hardware Health Configuration screen displays the monitored aspects of the module such as CPU temperature, system temperature, fan speeds, and voltages of the power planes.

Advanced	BIOS SETUP UTILITY	1
Hardware Health Configuration		Fan confiruration
CPU Temperature System Temperature Fan1 Speed	:69°C/156°F :35°C/95°F :4085_RPM	mode setting
Fan2 Speed UCORE +5U +3.3U +1.5UDIMM	:N/A :0.928 U :5.040 U :3.328 U :1.528 U	
Smart FAN 1 Smart FAN 2	(Auto) [Auto]	←→ Select Screen ↑↓ Select Item ←→ Change Option F1 General Help F10 Save and Exit ESC Exit

Figure 29: Illustration of Hardware Health Configuration screen

4.6.4.1. Smart FAN 1 and FAN 2

The Smart FAN features have two options: Auto and Full Speed. The "Auto" option enables the BIOS to adjust the fan speed according to the needs of the CPU and system. The "Full Speed" option forces the fans to run at their maximum RPM.

4.6.5. ACPI Configuration

ACPI grants the operating system direct control over system power management. The ACPI Configuration screen can be used to set a number of power management related functions.

BIOS SETUP UTILITY	
	Select the ACPI
Instal INCPI v3.01	— state used for System Suspend.
	←→ Select Screen 14 Select Iten ← Change Option F1 General Help F10 Save and Exit ESC Exit
	lAutol IACPI v3.01

Figure 30: Illustration of ACPI Configuration screen

4.6.5.1. Suspend Mode

The Suspend Mode field has three selectable options.

S1(POS)

S1/Power On Suspend (POS) is a low power state. In this state, no system context (CPU or chipset) is lost and hardware maintains all system contexts.

S3(STR)

S3/Suspend To RAM (STR) is a power-down state. In this state, power is supplied only to essential components such as main memory and wakeup-capable devices. The system context is saved to main memory, and context is restored from the memory when a "wakeup" event occurs.

Auto

When the Suspend Mode is set to Auto, the operating system will control the power state.

4.6.5.2. ACPI Version Features

The ACPI Version Features enables the BIOS to support the designated ACPI specification. There are three versions to choose from: ACPI v1.0, ACPI v2.0, and ACPI v3.0.

4.6.6. APM Configuration

APM enables the operating system to co-work with the BIOS to control the system power management. The APM Configuration screen can be used to set a number of power management functions.

Advanced	BIOS SETUP UTILITY	
Power Button Hode Restore on AC/Power Loss Advanced Resume Events Contr Resume On PCI PME8 Resume On KBC Uake-Up Key Resume On PS/2 Mouse Resume On RTC Alarm	IUn/UFFI [Last State] Disabled1 [Disabled1 [My Key] [Disabled1 [Disabled1 [Disabled]	Options On/Off Standby Suspend
		 ↔ Select Screen ↑↓ Select Iten ← Change Option F1 General Help F10 Save and Exit ESC Exit
v02.69 (C) Copurig	ht 1985-2010, American	1 Megatrends, Inc.

Figure 31: Illustration of APM Configuration screen

4.6.6.1. Power Button Mode

The Power Button Mode has three options.

On/Off

When On/Off is selected, pressing the power button will instantly cause the system to power on or off.

Standby

When Standby is selected, the power button must be pressed and held down for 4 seconds before the system will power off.

Suspend

When Suspend is selected, pressing the power button will instantly cause the system to enter suspend mode.

4.6.6.2. Restore on AC/Power Loss

Restore on AC/Power Loss defines how the system will respond after AC power has been interrupted while the system is on. There are three options.

Power Off

The Power Off option keeps the system in an off state until the power button is pressed again.

Power On

The Power On option restarts the system when the power has returned.

Last State

The Last State option restores the system to its previous state when the power was interrupted.

4.6.6.3. Resume On PCI PME#

The Resume On PCI PME# feature has two settings: Enabled and Disabled. When the setting is changed to "Enabled", the system will boot if PME event is triggered via PCI devices. When the setting is changed to "Disabled", this feature will not be function.

4.6.6.4. Resume On KBC

Resume on KBC wakes up a system that has been put into suspend or standby mode. When this feature is enabled, keyboard activity as defined in the **Wake-Up Key** feature will cause the system to wake up. This feature has three options.

S3

The S3 option enables keyboard activity to be detected if the system is in S3 power saving mode.

S3/S4/S5

The S3/S4/S5 option enables keyboard activity to be detected if the system is in S3/S4/S5 power saving mode.

Disabled

The Disabled option disables the detection of all keyboard activity.

4.6.6.5. Wake-Up Key

The Wake-Up Key feature can only be set when **Resume on PS/2 KBC** is set to "S3" or "S3/S4/S5". Otherwise, this feature will be not selectable. This feature has two options.

Any Key

The Any Key option enables any key on the keyboard to trigger the Wake-Up event.

Specific Key

The Specific Key option unlocks the Wake-Up Password feature.

4.6.6.6. Wake-Up Password

The Wake-Up Password feature can only be set when the **Wake-Up Key** feature is set to "Specific Key". This feature enables the user to specify a key sequence that must be entered in order to wake up the system.

The key sequence can consist of up to 6 alphanumeric characters and some special characters. Function keys and modifier keys (such as Ctrl, Alt, Del, etc.) cannot be used.

4.6.6.7. Resume On PS/2 Mouse

Resume on PS/2 Mouse wakes up a system that has been put into suspend or standby mode. When this feature is enabled, any PS/2 mouse activity that is detected will cause the system to wake up. This feature has three options.

S3

The S3 option enables any PS/2 mouse activity to be detected if the system is in S3 power saving mode.

S3/S4/S5

The S3/S4/S5 option enables any PS/2 mouse activity to be detected if the system is in S3/S4/S5 power saving mode.

Disabled

The Disabled option disables the detection of all PS/2 mouse activity.

4.6.6.8. Resume on RTC Alarm

This feature enables the BIOS to automatically power on the system at a scheduled time. When enabled, the **RTC Alarm Date** and **System Time** features will be unlocked.

4.6.6.9. RTC Alarm Date (Days)

The RTC Alarm Date feature is visible only when **Resume on RTC Alarm** is enabled. This feature enables the user to specify a specific date each month or daily recurrence. Use the + and - keys on the number pad to change the value of the RTC Alarm Date.

Every Day

The Every Day option triggers the RTC Alarm daily.

1 – 31

When a specific numeric date is selected, the RTC Alarm will be triggered on that day of the month.

4.6.6.10. System Time

The System Time option enables the user to specify the time the system should power on for the date that is set in **RTC Alarm Date**.

4.6.7. Spread Spectrum Configuration

The Spread Spectrum Configuration screen enables access to the CPU Spread Spectrum Setting feature.

BIOS SETUP UTILITY	
Spread Spectrum Configuration	Dynamic to adjust SSC
CPU Spread Spectrum Setting T0.121	 ↔ Select Screen T4 Select Iten ← Change Option F1 General Help F10 Save and Exit ESC Exit

Figure 32: Illustration of Spread Spectrum Configuration screen

4.6.7.1. CPU Spread Spectrum Setting

The CPU Spread Spectrum Setting feature enables the BIOS to modulate the clock frequencies originating from the module. The settings are in percentages of modulation. Higher percentages result in greater modulation of clock frequencies. This feature has settings that range from 0.1% to 0.9%.

4.6.8. USB Configuration

The USB Configuration screen shows the number of connected USB devices. Additionally, support for various USB features can be enabled or disabled.

BIOS SETUP UTILITY	
USB Configuration	
Module Version - 2.24.5-13.4	
USB Devices Enabled : None	
	↔ Select Screen
	F1 General Help F10 Save and Exit ESC Exit
	F10 Save and Exit ESC Exit

Figure 33: Illustration of USB Configuration screen

4.6.9. CRB Configuration

The CRB Configuration screen includes several chipset settings.

Advanced		
DRAM Clock Select Display Device 1 Select Display Device 2 Panel Type UGA Share Memory(Frame Buffer) OnChip HDAC Device SHBus Device Switch SDIO Host controller WATCH-DOG Backlight Control Backlight Control Backlight PUM Clock LAN Boot ROM	lfutol ICRTJ ILCDJ IO2J I256HBJ IEnableJ INew SHBus DeviceJ IEnableJ IDisabledJ ILevel 2J I (7K Hz J IEnabledJ	Options Auto 400 HHz 533 HHz ↔ Select Screen T1 Select Iten +- Change Option F1 General Help F10 Save and Exit ESC Exit
v02.69 (C) Copyright	1985-2010, American M	egatrends, Inc.

Figure 34: Illustration of CRB Configuration screen

4.6.9.1. DRAM Clock

The DRAM Clock feature enables the user to determine how the BIOS handles the memory clock frequency. The memory clock can either be dynamic or static. This feature has three options.

Auto

The Auto option enables the BIOS to select a compatible clock frequency for the installed memory.

400 MHz

The 400 MHz option forces the BIOS to be fixed at 800 MHz for DDR3 memory modules.

533 MHz

The 533 MHz option forces the BIOS to be fixed at 1066 MHz for DDR3 memory modules.

4.6.9.2. Select Display Device 1 and 2

The Select Display Device feature enables the user to choose a specific display interface. This feature has two options: CRT and LCD.

4.6.9.3. Panel Type

This feature enables the user to specify the resolution of the display being used with the system. The panel types are predefined in the VGA VBIOS.

Panel Type	Resolution	Panel Type	Resolution
00	640 × 480	08	800 × 480
01	800 × 600	09	1024 × 600
02	1024 × 768	10	1366 × 768
03	1280 × 768	11	1600 × 1200
04	1280 × 1024	12	1680 × 1050
05	1400 × 1050	13	User define
06	1440 × 900	14	User define
07	1280 × 800	15	User define

Table 16: Panel types resolution

4.6.9.4. VGA Share Memory (Frame Buffer)

The VGA Share Memory feature enables the user to choose the amount of the system memory to reserve for use by the integrated graphics controller. The amount of memory options are: 128 MB, 256 MB and 512 MB.

4.6.9.5. OnChip HDAC Device

The OnChip HDAC Device feature enables the BIOS to control the high definition audio codec in the chipset. This feature has two options: enable and disable.

4.6.9.6. SMBus Device Switch

This feature enables support for the new chipset definition of the SMBus interface. There are two options: New SMBus Device and Old SMBus Device. If the OS cannot support the new SMBus definition, then change the setting to "Old SMbus Device".

4.6.9.7. SDIO Host controller

The SDIO Host controller feature has two options: Enabled and Disabled.

4.6.9.8. WATCH-DOG

The WATCHDOG Timer Enable feature unlocks two other features that enable the BIOS to monitor the state of the system. This feature has two options: enabled or disabled.

4.6.9.9. Unit-Select

The Unit-Select feature is only available if the **WATCH-DOG** feature has been enabled. This feature has two options: minutes and seconds.

4.6.9.10. Time-Select

The Time-Select is only available if the **WATCH-DOG** feature has been enabled. This feature requires the user to input an integer in the range of 0– 255 if the **Unit-Select** feature is set to "Seconds". If the **Unit-Select** feature is set to "Minutes", then the user can only input an integer in the range of 0–17. If the user inputs "0", the **WATCH-DOG** feature will be disabled regardless of the setting for **Unit-Select**.

4.6.9.11. Backlight Control

The Backlight Control feature enables the user to control the brightness of the LCD backlight. This feature has four options.

- Level 1 25% Light
- Level 2 50% Light
- Level 3 75% Light
- Level 4 100% Light

4.6.9.12. Backlight PWM Clock

The Backlight PWM Clock feature enables the user to correct the LCD backlight PWM clock. This feature has four options: 14 KHz, 7 KHz, 110 Hz, 54.4 Hz.

4.6.9.13. LAN Boot ROM

The LAN Option ROM feature has two options: Enabled and Disabled. If the LAN Boot ROM feature is enabled, then the system will load a separate ROM for the LAN controller in order to boot through the LAN Ethernet. When the setting is changed to "Disabled", the system does not load a separate ROM from the LAN controller.

4.7. Boot Settings

The Boot Settings screen has two links that goes to the **Boot Settings Configuration** and **Boot Device Priority** screens.

Main Advanced	Boot	BIOS SETU Security	P UTILITY Exit	
Boot Settings			Configure Settings	
▶ Boot Settings (Configurat			- auring system boot.
► Boot Device Pr	iority			
				← Select Screen
				Enter Go to Sub Screen
				F10 Save and Exit
				and berry
	(C) Commi	abt 1995-201	0 Once te an	Horateondo Tue

Figure 35: Illustration of Boot Settings screen

4.7.1. Boot Settings Configuration

The Boot Settings Configuration screen has several features that can be run during the system boot sequence.

Boot	BIOS SETUP UTILITY	
Boot Settings Configuration	Allows BIOS to skip	
Quick Boot Quiet Boot Bootup Num-Lock Wait For 'F1' If Error Hit 'DEL' Message Display	(Enabled) (Enabled) (On) (Enabled) (Enabled)	Certain tests while booting. This will decrease the time needed to boot the system.
		←→ Select Screen 14 Select Item ← Change Option F1 General Help F10 Save and Exit ESC Exit
v02.69 (C) Copyrigh	t 1985-2010, America	in Megatrends, Inc.

Figure 36: Illustration of Boot Settings Configuration screen

4.7.1.1. Quick Boot

The Quick Boot feature enables the BIOS to skip certain tests in order to speed up the boot sequence. This feature has two options: "Enabled" and "Disabled".

4.7.1.2. Quiet Boot

The Quiet Boot feature hides all of the Power-on Self Test (POST) messages during the boot sequence. Instead of the POST messages, the user will see an OEM logo. This feature has two options: enabled and disabled.

4.7.1.3. Bootup Num-Lock

The Bootup Num-Lock feature determines how the 10-key pad will behave. When the feature is enabled, the 10-key pad will behave as a number pad. When the feature is disabled, the 10-key pad will behave as cursor navigation keys.

4.7.1.4. Wait for 'F1' if Error

This feature determines how the system will respond if an error is detected during the boot sequence. If this feature is enabled, the BIOS will pause booting and wait for the user to press F1 to enter the BIOS setup menu. This feature has two options: enabled and disabled.

4.7.1.5. Hit 'DEL' Message Display

This feature determines if the BIOS will display a POST message that informs the user how to access the BIOS Setup Utility.¹ This feature has two options: enabled and disabled.

4.7.2. Boot Device Priority

The Boot Device Priority screen lists all bootable devices.

Boot	BIOS SETUP UTILITY		
Boot Device Priority		Specifies the boot	
1st Boot Device	[Network:Realtek Bo]	A device enclosed in parenthesis has been disabled in the corresponding type menu.	
		 ↔ Select Screen ↑1 Select Item ← Change Option F1 General Help F10 Save and Exit ESC Exit 	

4.7.2.1. 1st Boot Device

This feature specifies the boot sequence from the available devices. The available boot devices are detected dynamically and bootable devices will be listed accordingly. This feature has two options: Network: Realtek Boot Agent and Disabled]

4.8. Security Settings

The Security Settings screen provides a way to restrict access to the BIOS or even the entire system.

BIOS SETUP UTILITY Main Advanced Boot Security Exit	
Security Settings	Install or Change the
Supervisor Password :Not Installed User Password :Not Installed	passwora.
Change Supervisor Password Change User Password	
	↔ Select Screen 14 Select Item Enter Change
	F1 General Help F10 Save and Exit ESC Exit
v02.69 (C)Copyright 1985-2010, Americ	an Megatrends, Inc.

Figure 37: Illustration of Security Settings screen

4.8.1. Change Supervisor Password

This option is for setting a password for accessing the BIOS setup utility. When a password has been set, a password prompt will be displayed whenever the BIOS setup utility is launched. This prevents an unauthorized person from changing any part of the system configuration.

When a supervisor password is set, the **Password Check** option will be unlocked.

4.8.2. User Access Level

This feature controls the level of access a user (without the supervisor password) is granted to the BIOS setup utility. This feature has four options.

No Access

The No Access option completely locks the BIOS setup utility. The supervisor password is required to access and change the BIOS settings.

View Only

The View Only option only allows access to view the BIOS settings. Users with this permission level cannot make changes to the BIOS.

Limited

The Limited option only allows non-critical BIOS settings to be changed. Changes are allowed to the following BIOS features:

- System Time
- System Date
- Quick Boot
- Display Logo

Full Access

The Full Access option allows all BIOS settings to be changed except for the Change Supervisor Password and User Access Level options.

4.8.3. Change User Password

This option is for setting a password for non-supervisors. When a user password is set, the **Clear User Password** and **Password Check** options will be unlocked.

4.8.4. Clear User Password

This option is only available when the user accesses the BIOS Setup Utility when the user password has been specified.

4.8.5. Password Check

This feature is compulsory when the **Change Supervisor Password** option is set. The user will have up to three chances to enter the correct password before the BIOS forces the system to stop booting. If the user does not enter the correct password, the keyboard will also lock up. The only way to get past this is to do a hard reboot (i.e., use the system reset button or cut off the power to the system). A soft reboot (i.e., Ctrl+Alt+Del) will not work because the keyboard will be locked. This feature has two options.

Setup

The Setup option forces users to enter a password in order to access the BIOS Setup Utility.

Always

The Always option forces users to enter a password in order to boot up the system.

4.9. Exit Options

Hala	0.du anend	Boot	BIOS SETU	PUTILITY	
Exit O Save C Discar Discar Load O	havanced ptions hanges and b d Changes ar d Changes ptimal Defau	sit d Exit	Security	EXIL	 Exit system setup after saving the changes. F10 key can be used for this operation.
					 ↔ Select Screen t4 Select Ites Enter Go to Sub Screen F1 General Help F10 Save and Exit ESC Exit
	v02.69	C) Copyr i	ght 1985-201	0, American	Megatrends, Inc.

Figure 38: Illustration of Exit Options screen

4.9.1. Save Changes and Exit

Save all changes to the BIOS and exit the BIOS Setup Utility. The "F10" hotkey can also be used to trigger this command.

4.9.2. Discard Changes and Exit

Exit the BIOS Setup Utility without saving any changes. The "Esc" hotkey can also be used to trigger this command.

4.9.3. Discard Changes

This command reverts all changes to the settings that were in place when the BIOS Setup Utility was launched. The "F7" hotkey can also be used to trigger this command.

4.9.4. Load Optimal Defaults

Load optimal default values for all the setup items. The default optimized values are defined by the board manufacturer to provide optimized environment for a basic system. The "F9" hotkey can also be used to trigger this command.

5. Driver Installation

5.1. Microsoft Driver Support

The VIA ETX-8X90 module is compatible with Microsoft operating systems. The latest Windows drivers can be downloaded from the VEPD website at www.viaembedded.com.

For embedded operating systems, the related drivers can be found in the VIA Embedded website at www.viaembedded.com.

5.2. Linux Driver Support

The VIA ETX-8X90 module is highly compatible with many Linux distributions.

Support and drivers are provided through various methods including:

- Drivers provided by VIA
- Using a driver built into a distribution package
- Visiting www.viaembedded.com for the latest updated drivers
- Installing a third party driver (such as the ALSA driver from the Advanced Linux Sound Architecture project for integrated audio)

For OEM clients and system integrators developing a product for long term production, other code and resources may also be made available. Contact VEPD to submit a request.

Appendix A. ETXDB1 Carrier Board Reference

A.1. Board Specifications

- Module Name
 - ETXDB1

Rear I/O Connector

- 1 x VGA connector
- o 1 x COM connector
- o 4 x USB 2.0 ports
- 1 x RJ-45 LAN port (10/100 Mbit Ethernet)

Onboard Connector and Slot

- 4 x ETX connectors
- 1 x ISA slot (compatible with ISA ETX 3.02)
- 2 x IDE connectors (IDE1 and IDE2)
- o 2 x PCI slots (compatible with PCI 2.3, 32 bit/ 33MHz)
- 1 x LVDS connector (compatible with TIA/ELA-644)
 - Pixel clock up to 85 MHz
 - Support panel resolution up to WXGA 1366 x 768
 - Supports one or two-channel 18-bit or 24-bit LVDS panel
- o 1 x Back light connector
- 1 x ATX power connector
- 1 x RTC battery socket

Onboard Pin Header

- o 1 x LPT pin header
- o 1 x Keyboard and Mouse pin header
- o 1 x COM pin header
- o 1 x Front Panel pin header (for HDD LED, Power LED, Switch and Speaker)
- o 1 x Front Audio pin header
- 1 x SMBus pin header
- $\circ -1 \; x \; l^2 C$ bus pin header
- $\circ~1$ x SIR (infrared) pin header

Onboard Jumper and Switch

o 1 x Backlight and Panel Power Select jumper

- Onboard Speaker
 - o 1 x Buzzer speaker

• Form Factor and Dimension

- $\circ \ \ \text{Mini-ITX}$
- o 6 Layers
- o 17 cm x 17cm
- Operating Temperature • 0°C up to 60°C
- Operating and Storage Humidity
 - o 95% relative humidity

A.1.1. Board Storage Channel Configuration

	ETXDB1 (Ca	rrier Board)	ETX-8X90 (Computer-On-Module)		
	IDE1	IDE2	SATA1	SATA2	
Default settings	Enable	Disable	Disable	Enable	
Manufacturing option 1	Disable	Disable	Enable	Enable	
Manufacturing option 2	Enable	Enable	Disable	Disable	

Table 17: ETXDB1 and ETX-8X90 storage configuration

A.2. External I/O Connectors

The ETXDB1 has a wide selection of interfaces. It includes a selection of frequently used ports and connectors as part of the external I/O coastline.

A.2.1. Front I/O

Figure 39: Front I/O ports and connectors

A.3. ETXDB1 Layout Diagram

A.3.1. Onboard Connectors and Slots

Figure 40: ETXDB1 connectors and slots diagram

ltem	Description
ISA1	ISA slot
IDE2	IDE connector 2
BUZZER1	Buzzer speaker
BAT1	RTC battery
CNX1	ETX connector X1
ATX1	20-pin ATX power connector
CNX2	ETX connector X2
CNX4	ETX connector X4
CNX3	ETX connector X3
BL1	Backlight connector
LVDS1	LVDS connector
PCI1	PCI slot 1
PCI2	PCI slot 2
IDE1	IDE connector 1

Table 18: Description table of the ETXDB1 connectors and slots

A.3.2. Onboard Pin headers and Jumpers

Figure 41: ETXDB1 pin headers and jumpers diagram

ltem	Description
F_AUDIO1	Front audio pin header
I2C1	I ² C pin header
SIR1	Serial Infrared pin header
SMB1	System Management Bus (SMBus) pin header
F_PANEL1	Front panel pin header
LPT1	Line Print Terminal pin header
COM2	COM pin header
KBMS2	Keyboard and mouse pin header
J1	Backlight voltage and panel power select jumper

Table 19: Description table of the ETXDB1 pin headers and jumpers

A.3.3. Connectors and Slots Pin Definition

A.3.3.1. ATX1 : 20-pin ATX Power Connector

Figure 42: ATX Power connector diagram

Pin	Signal
1	+3.3V
2	+3.3V
3	GND
4	+5V
5	GND
6	+5V
7	GND
8	PW-OK
9	+5VSB
10	+12V
11	+3.3V
12	-12V
13	GND
14	PS-ON
15	GND
16	GND
17	GND
18	-5V
19	+5V
20	+5V

Table 20: ATX Power connector pinout

A.3.3.2. ISA1 : ISA slot

D18	D1	B31	B1
C18	C1	A31	Al

Figure 43: ISA slot diagram

Pin	Signal	Pin	Signal	Pin	Signal	Pin	Signal
A1	-IOCHCK	B1	GND	C1	-SBHE	D1	-MEMCS16
A2	SD7	B2	-RSTDRV	C2	LA23	D2	-IOCS16
A3	SD6	B3	+5V	C3	LA22	D3	IRQ10
A4	SD5	B4	IRQ9	C4	LA21	D4	IRQ11
A5	SD4	B5	-5V	C5	LA20	D5	IRQ12
A6	SD3	B6	DREQ2	C6	LA19	D6	ISA_IRQ15
A7	SD2	B7	-12V	C7	LA18	D7	ISA_IRQ14
A8	SD1	B8	-0WS	C8	LA17	D8	-DACK0
A9	SD0	B9	+12V	C9	-MEMR	D9	DREQ0
A10	IOCHRDY	B10	GND	C10	-MEMW	D10	-DACK5
A11	AEN	B11	-SMEMW	C11	SD8	D11	DREQ5
A12	SA19	B12	-SMEMR	C12	SD9	D12	-DACK6
A13	SA18	B13	-IOW	C13	SD10	D13	DREQ6
A14	SA17	B14	-IOR	C14	SD11	D14	-DACK7
A15	SA16	B15	-DACK3	C15	SD12	D15	DREQ7
A16	SA15	B16	DREQ3	C16	SD13	D16	+5V
A17	SA14	B17	-DACK1	C17	SD14	D17	-MASTER
A18	SA13	B18	DREQ1	C18	SD15	D18	GND
A19	SA12	B19	-REFRESH				
A20	SA11	B20	SYS_CLK				
A21	SA10	B21	IRQ7				
A22	SA9	B22	IRQ6				
A23	SA8	B23	IRQ5				
A24	SA7	B24	IRQ4				
A25	SA6	B25	IRQ3				
A26	SA5	B26	-DACK2				
A27	SA4	B27	TC				
A28	SA3	B28	BALE				
A29	SA2	B29	+5V				
A30	SA1	B30	ISA_OSC				
A31	SA0	B31	GND				

Table 21: ISA slot pinout

A.3.3.3. PCI1 and PCI2: PCI Slots

Figure 44: PCI slot diagram

PCI1								
Pin	Signal	Pin	Signal	Pin	Signal	Pin	Signal	
A1	NC	A2	+12V	B1	-12V	B2	NC	
A3	NC	A4	NC	B3	GND	B4	NC	
A5	+5V	A6	-INTA	B5	+5V	B6	+5V	
A7	-INTC	A8	+5V	B7	-INTB	B8	-INTD	
A9	NC	A10	+5V	B9	NC	B10	NC	
A11	NC	A12	GND	B11	NC	B12	GND	
A13	GND	A14	+3.3V AUX	B13	GND	B14	NC	
A15	-PCIRST	A16	+5V	B15	GND	B16	PCICLK1	
A17	-GNT0	A18	GND	B17	GND	B18	-REQ0	
A19	-PME	A20	AD30	B19	+5V	B20	AD31	
A21	+3.3V	A22	AD28	B21	AD29	B22	GND	
A23	AD26	A24	GND	B23	AD27	B24	AD25	
A25	AD24	A26	IDSEL	B25	+3.3V	B26	-CBE3	
A27	+3.3V	A28	AD22	B27	AD23	B28	GND	
A29	AD20	A30	GND	B29	AD21	B30	AD19	
A31	AD18	A32	AD16	B31	+3.3V	B32	AD17	
A33	+3.3V	A34	-FRAME	B33	-CBE2	B34	GND	
A35	GND	A36	-TRDY	B35	-IRDY	B36	+3.3V	
A37	GND	A38	-STOP	B37	-DEVSEL	B38	GND	
A39	+3.3V	A40	GND	B39	-PLOCK	B40	-PERR	
A41	NC	A42	GND	B41	+3.3V	B42	-SERR	
A43	PAR	A44	AD15	B43	+3.3V	B44	-CBE1	
A45	+3.3V	A46	AD13	B45	AD14	B46	GND	
A47	AD11	A48	GND	B47	AD12	B48	AD10	
A49	AD9	A50	-	B49	GND	B50	-	
A51	-	A52	-CBE0	B51	-	B52	AD8	
A53	+3.3V	A54	AD6	B53	AD7	B54	+3.3V	
A55	AD4	A56	GND	B55	AD5	B56	AD3	
A57	AD2	A58	AD0	B57	GND	B58	AD1	
A59	+5V	A60	-P1REQ64	B59	+5V	B60	-P1ACK64	
A61	+5V	A62	+5V	B61	+5V	B62	+5V	
T 1 1	00.001.1.1.1							

Table 22: PCI slot 1 pinout

ETX-8X90 User Manual

	PCI2								
Pin	Signal	Pin	Signal	Pin	Signal	Pin	Signal		
A1	NC	A2	+12V	B1	-12V	B2	NC		
A3	NC	A4	NC	B3	GND	B4	NC		
A5	+5V	A6	-INTB	B5	+5V	B6	+5V		
A7	-INTD	A8	+5V	B7	-INTC	B8	-INTA		
A9	NC	A10	+5V	B9	NC	B10	NC		
A11	NC	A12	GND	B11	NC	B12	GND		
A13	GND	A14	+3.3V AUX	B13	GND	B14	NC		
A15	-PCIRST	A16	+5V	B15	GND	B16	PCICLK2		
A17	-GNT1	A18	GND	B17	GND	B18	-REQ1		
A19	-PME	A20	AD30	B19	+5V	B20	AD31		
A21	+3.3V	A22	AD28	B21	AD29	B22	GND		
A23	AD26	A24	GND	B23	AD27	B24	AD25		
A25	AD24	A26	IDSEL	B25	+3.3V	B26	-CBE3		
A27	+3.3V	A28	AD22	B27	AD23	B28	GND		
A29	AD20	A30	GND	B29	AD21	B30	AD19		
A31	AD18	A32	AD16	B31	+3.3V	B32	AD17		
A33	+3.3V	A34	-FRAME	B33	-CBE2	B34	GND		
A35	GND	A36	-TRDY	B35	-IRDY	B36	+3.3V		
A37	GND	A38	-STOP	B37	-DEVSEL	B38	GND		
A39	+3.3V	A40	GND	B39	-PLOCK	B40	-PERR		
A41	NC	A42	GND	B41	+3.3V	B42	-SERR		
A43	PAR	A44	AD15	B43	+3.3V	B44	-CBE1		
A45	+3.3V	A46	AD13	B45	AD14	B46	GND		
A47	AD11	A48	GND	B47	AD12	B48	AD10		
A49	AD9	A50	-	B49	GND	B50	-		
A51	-	A52	-CBE0	B51	-	B52	AD8		
A53	+3.3V	A54	AD6	B53	AD7	B54	+3.3V		
A55	AD4	A56	GND	B55	AD5	B56	AD3		
A57	AD2	A58	AD0	B57	GND	B58	AD1		
A59	+5V	A60	-P1REQ64	B59	+5V	B60	-P1ACK64		
A61	+5V	A62	+5V	B61	+5V	B62	+5V		

Table 23: PCI slot 2 pinout

A.3.3.4. IDE1 and IDE2: IDE Connectors

Figure 45: IDE connector diagram

IDE1				IDE2			
Pin	Signal	Pin	Signal	Pin	Signal	Pin	Signal
1	IDERST_D1	2	GND	1	IDERST_D2	2	GND
3	DD7A_D1	4	DD8A_D1	3	DD7A_D2	4	DD8A_D2
5	DD6A_D1	6	DD9A_D1	5	DD6A_D2	6	DD9A_D2
7	DD5A_D1	8	DD10A_D1	7	DD5A_D2	8	DD10A_D2
9	DD4A_D1	10	DD11A_D1	9	DD4A_D2	10	DD11A_D2
11	DD3A_D1	12	DD12A_D1	11	DD3A_D2	12	DD12A_D2
13	DD2A_D1	14	DD13A_D1	13	DD2A_D2	14	DD13A_D2
15	DD1A_D1	16	DD14A_D1	15	DD1A_D2	16	DD14A_D2
17	DD0A_D1	18	DD15A_D1	17	DD0A_D2	18	DD15A_D2
19	GND	20	Кеу	19	GND	20	Кеу
21	DMARQA_D1	22	GND	21	DMARQA_D2	22	GND
23	DIOWnA_D1	24	GND	23	DIOWnA_D2	24	GND
25	DIORnA_D1	26	GND	25	DIORnA_D2	26	GND
27	IORDYA_D1	28	CSELA_D1	27	IORDYA_D2	28	CSELA_D2
29	DMACKnA_D1	30	GND	29	DMACKnA_D2	30	GND
31	INTRQA_D1	32	NC	31	INTRQA_D2	32	NC
33	DA1A_D1	34	CBLID_P	33	DA1A_D2	34	PDIAG_S
35	DA0A_D1	36	DA2A_D1	35	DA0A_D2	36	DA2A_D2
37	CS0nA_D1	38	CS1nA_D1	37	CS0nA_D2	38	CS1nA_D2
39	DASPnXA1_D1	40	GND	39	DASPnXA1_D2	40	GND

Table 24: IDE connectors pinout

A.3.3.5. LVDS1: LVDS Connector

Figure 46: LVDS connector diagram

Pin	Signal	Pin	Signal
1	D4-	2	PVDD1
3	D4+	4	PVDD1
5	GND	6	GND
7	D5-	8	GND
9	D5+	10	D0-
11	GND	12	D0+
13	D6-	14	GND
15	D6+	16	D1-
17	GND	18	D1+
19	CLK2-	20	GND
21	CLK2+	22	D2-
23	GND	24	D2+
25	D7-	26	GND
27	D7+	28	CLK1-
29	NC	30	CLK1+
31	GND	32	GND
33	+3.3V / PVDD (optional)	34	D3-
35	NC	36	D3+
37	NC	38	LCD_CLK
39	NC	40	LCD DATA

Table 25: LVDS connector pinout

A.3.3.6. BL1: Backlight Connector

Figure 47: Backlight connector diagram

Pin	Signal	Pin	Signal
1	VDD_BL	5	ENABLT1
2	VDD_BL	6	BL_CTL
3	ENABLT1	7	GND
4	NC	8	GND

Table 26: Backlight connector pinout

A.3.3.7. CNX1~ CNX4: ETX Connector X1, X2, X3 and X4

Figure 48: ETX connector X1, X2, X3 and X4 diagram

CNX1 Connector								
Pin	Signal	Pin	Signal	Pin	Signal	Pin	Signal	
1	GND	2	GND	51	+5V	52	+5V	
3	PCICLK3	4	PCICLK4	53	PAR	54	-SERR	
5	GND	6	GND	55	-PERR	56	NC	
7	PCICLK1	8	PCICLK2	57	-PME	58	USB2-	
9	-REQ3	10	-GNT3	59	-PLOCK	60	-DEVSEL	
11	GNT2	12	+3.3VMAIN	61	-TRDY	62	USB3-	
13	REQ2	14	-GNT1	63	-IRDY	64	-STOP	
15	REQ1	16	+3.3VMAIN	65	-FRAME	66	USB2+	
17	-GNT0	18	NC	67	GND	68	GND	
19	+5V	20	+5V	69	AD16	70	-CBE2	
21	SERIRQ1	22	-REQ0	71	AD17	72	USB3+	
23	AD0	24	+3.3VMAIN	73	AD19	74	AD18	
25	AD1	26	AD2	75	AD20	76	USB0-	
27	AD4	28	AD3	77	AD22	78	AD21	
29	AD6	30	AD5	79	AD23	80	USB1-	
31	-CBE0	32	AD7	81	AD24	82	-CBE3	
33	AD8	34	AD9	83	+5V	84	+5V	
35	GND	36	GND	85	AD25	86	AD26	
37	AD10	38	AUXAL	87	AD28	88	USB0+	
39	AD11	40	MIC	89	AD27	90	AD29	
41	AD12	42	AUXAR	91	AD30	92	USB1+	
43	AD13	44	ASVCC	93	-PCIRST	94	AD31	
45	AD14	46	SNDL	95	-INTC	96	-INTD	
47	AD15	48	ASGND	97	-INTA	98	-INTB	
49	-CBE1	50	SNDR	99	GND	100	GND	

Table 27: ETX connector X1 pinout

	CNX2 Connector								
Pin	Signal	Pin	Signal		Pin	Signal	Pin	Signal	
1	GND	2	GND		51	+5V	52	+5V	
3	SD14	4	SD15		53	SA6	54	IRQ5	
5	SD13	6	-MASTER		55	SA7	56	IRQ6	
7	SD12	8	DREQ7		57	SA8	58	IRQ7	
9	SD11	10	-DACK7		59	SA9	60	SYS_CLK	
11	SD10	12	DREQ6		61	SA10	62	-REFRESH	
13	SD9	14	-DACK6		63	SA11	64	DREQ1	
15	SD8	16	DREQ5		65	SA12	66	-DACK1	
17	-MEMW	18	-DACK5		67	GND	68	GND	
19	-MEMR	20	DREQ0		69	SA13	70	DREQ3	
21	LA17	22	-DACK0		71	SA14	72	-DACK3	
23	LA18	24	ISA_IRQ14		73	SA15	74	-IOR	
25	LA19	26	ISA_IRQ15		75	SA16	76	-IOW	
27	LA20	28	IRQ12		77	SA18	78	SA17	
29	LA21	30	IRQ11		79	SA19	80	-SMEMR	
31	LA22	32	IRQ10		81	-IOCHRDY	82	AEN	
33	LA23	34	-IOCS16		83	+5V	84	+5V	
35	GND	36	GND		85	SD0	86	-SMEMW	
37	-SBHE	38	-MEMCSI6		87	SD2	88	SD1	
39	SA0	40	ISA_OSC		89	SD3	90	-0WS	
41	SA1	42	BALE		91	DREQ2	92	SD4	
43	SA2	44	TC		93	SD5	94	IRQ9	
45	SA3	46	-DACK2		95	SD6	96	SD7	
47	SA4	48	IRQ3		97	-IOCHCK	98	-RSTDRV	
49	SA5	50	IRQ4		99	GND	100	GND	

Table 28: ETX connector X2 pinout

CNX3 Connector								
Pin	Signal	Pin	Signal		Pin	Signal	Pin	Signal
1	GND	2	GND		51	NC	52	NC
3	REDN	4	BLUEN		53	+5V	54	GND
5	HS	6	GREENN		55	PSTB	56	PAFD
7	VS	8	DDCCLKN		57	NC	58	P_PRD7
9	NC	10	DDCDATAN		59	IRRX	60	PERR
11	LVDSCLK2-	12	LVDSD7-		61	IRTX	62	P_PRD6
13	LVDSCLK2+	14	LVDSD7+		63	SIN2	64	PINIT
15	GND	16	GND		65	GND	66	GND
17	LVDSD5+	18	LVDSD6+		67	RTS2	68	P_PRD5
19	LVDSD5-	20	LVDSD6-		69	DTR2	70	PSLIN
21	GND	22	GND		71	DCD2	72	P_PRD4
23	LVDSD3-	24	LVDSD4+		73	DSR2	74	P_PRD3
25	LVDSD3+	26	LVDSD4-		75	CTS2	76	P_PRD2
27	GND	28	GND		77	SOUT2	78	P_PRD1
29	LVDSD2-	30	LVDSCLK1+		79	RI2	80	P_PRD0
31	LVDSD2+	32	LVDSCLK1-		81	+5V	82	+5V
33	GND	34	GND		83	SIN1	84	PACK
35	LVDSD0+	36	LVDSD1+		85	RTS1	86	P_BUSY
37	LVDSD0-	38	LVDSD1-		87	DTR1	88	P_PE
39	+5V	40	+5V		89	DCD1	90	P_SLCT
41	JILI_DAT	42	NC		91	DSR1	92	MSCK
43	JILI_CLK	44	-BLON		93	CTS1	94	MSDT
45	BIASON	46	DIGON		95	SOUT1	96	КВСК
47	NC	48	NC		97	RI1	98	KBDT
49	NC	50	NC		99	GND	100	GND

Table 29: ETX connector X3 pinout

CNX4 Connector								
Pin	Signal	Pin	Signal		Pin	Signal	Pin	Signal
1	GND	2	GND		51	-SDIOW	52	-PDIOR
3	+5VSUS	4	ATX_PG		53	SDDREQ	54	-PDIOW
5	PS_ON-	6	SPEAKER		55	SDD15	56	PDDREQ
7	PW_BN-	8	+3.3VBAT		57	SDD0	58	PDD15
9	NC	10	LILED-		59	SDD14	60	PDD0
11	RSMRST-	12	ACTLED-		61	SDD1	62	PDD14
13	NC	14	SPEEDLED-		63	SDD13	64	PDD1
15	NC	16	I ² C_CLK		65	GND	66	GND
17	+5V	18	+5V		67	SDD2	68	PDD13
19	OVCR-	20	NC		69	SDD12	70	PDD2
21	EXTSMI-	22	I ² C_DAT		71	SDD3	72	PDD12
23	SMB_CLK	24	SMBDATA		73	SDD11	74	PDD3
25	-SDCS3	26	-SMBALRT		75	SDD4	76	PDD11
27	-SDCS1	28	-HD_LED		77	SDD10	78	PDD4
29	SDA2	30	-PDCS3		79	SDD5	80	PDD10
31	SDA0	32	-PDCS1		81	+5V	82	+5V
33	GND	34	GND		83	SDD9	84	PDD5
35	PDIAG_S	36	PDA2		85	SDD6	86	PDD9
37	SDA1	38	PDA0		87	SDD8	88	PDD6
39	IRQ15	40	PDA1		89	-RING	90	CBLID_P
41	NC	42	GPE1-		91	RXD-	92	PDD8
43	-SDDACK	44	IRQ14		93	RXD+	94	SDD7
45	SIORDY	46	-PDDACK		95	TXD-	96	PDD7
47	-SDIOR	48	PIORDY		97	TXD+	98	-IEDRST1
49	+5V	50	+5V		99	GND	100	GND

Table 30: ETX connector X4 pinout

A.3.4. Pin Headers and Jumpers Pin Definition

A.3.4.1. F_AUDIO1 and I2C1: Front audio and I²C pin headers

Figure 49: Front audio and I²C pin header diagrams

Pin	Signal	Pin	Signal
1	AUXAR	2	AGND
3	AUXAL	4	MICIN
5	SNDR	6	NC
7	SNDL	8	AGND

Table 31: Front audio pin header pinout

Pin	Signal
1	+5V / +3V (optional)
2	CLK
3	DAT
4	GND

Table 32: I²C pin header pinout

A.3.4.2. SIR1 and SMB1: Serial Infrared and SMBus pin headers

Figure 50: Serial Infrared and SMBus pin header diagram

Pin	Signal
1	+5V
2	Кеу
3	IRRX
4	GND
5	IRTX

Table 33: Serial Infrared pin header pinout

Pin	Signal
1	+3.3V
2	CLK
3	DAT
4	GND

Table 34: SMBus pin header pinout

A.3.4.3. F_PANEL1 and LPT1: Front panel and LPT pin headers

Figure 51: Front panel and LPT pin header diagram

Pin	Signal	Pin	Signal
1	Power LED+	2	+5V
3	Power LED+	4	HDD_LED-
5	Power LED-	6	Power button
7	+5V	8	GND
9	NC	10	Reset
11	NC	12	GND
13	Speaker-	14	+5V
15	Кеу	16	NC

Table 35: Front panel pin header pinout

Pin	Signal	Pin	Signal
1	-STB	2	-AFD
3	D0	4	-ERR
5	D1	6	-INIT
7	D2	8	-SLIN
9	D3	10	GND
11	D4	12	GND
13	D5	14	GND
15	D6	16	GND
17	D7	18	GND
19	-ACK	20	GND
21	BUSY	22	GND
23	PE	24	GND
25	SCLT	26	Кеу

Table 36: LPT pin header pinout

A.3.4.4. COM2 and KBMS1: COM and Keyboard & mouse pin headers

Figure 52: COM and Keyboard/mouse pin header diagrams

Pin	Signal	Pin	Signal
1	DCD2-	2	RXD2-
3	TXD2-	4	DTR2-
5	GND	6	DSR2-
7	RTS2	8	CTS2-
9	RI2-	10	Кеу

Table 37: COM pin header pinout

Pin	Signal	Pin	Signal
1	+5VSUS	2	+5VSUS
3	NC	4	Кеу
5	GND	6	GND
7	KB_DT	8	MS_DT
9	KB_CK	10	MS_CK

Table 38: Keyboard & mouse pin header pinout

A.3.4.5. J1: Back Light and Panel Power select jumper

Figure 53: Backlight and Panel power select jumper diagram

Backlight voltage setting	Pin 1	Pin 3	Pin 5
+12V	On	On	Off
+5V	Off	On	On
Panel voltage setting	Pin 2	Pin 4	Pin 6
+3.3V	On	On	Off
+5V	Off	On	On

Table 39: Backlight and Panel power select jumper settings

A.4. ETXDB1 Dimensions

A.4.1. ETXDB1 Board Dimensions

Figure 54: ETXDB1 board dimension diagram

A.4.2. ETXDB1 External I/O Dimensions

Figure 55: ETXDB1 External I/O dimension diagram

Taiwan Headquarters

1F, 531 Zhong-Zheng Road Xindian District, New Taipei City 231, Taiwan

TEL: 886.2.2218.5452 FAX: 886.2.2218.5453 Email: embedded@via.com.tw

China

Tsinghua Science Park Bldg. 7 No. 1 Zongguancun East Road Haiden District, Beijing, 100084 China

TEL: 86.10.59852288 FAX: 86.10.59852299 Email: embedded@viatech.com.cn

USA

940 Mission Court Fremont, CA 94539 USA

TEL: 1.510.683.3300 FAX: 1.510.687.4654 Email: embedded@viatech.com

🖲 Japan

3-15-7 Ebisu MT Bldg. 6F Higashi, Shibuya-ku Tokyo 150-0011 Japan

TEL: 81.3.5466.1637 FAX: 81.3.5466.1638 Email: embedded@viatech.co.jp

Europe

In den Dauen 6 53117 Bonn Germany

TEL: 49.228.688565.0 FAX: 49.228.688565.19 Email: embedded@via-tech.de

💽 Korea

2F, Sangjin Bldg., 417 Dogok Dong, Gangnam-Gu Seoul 135-854 South Korea

TEL: 82.2.571.2986 FAX: 82.2.571.2987 Email: embedded@via-korea.com